Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1173, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332002

RESUMO

Respiratory syncytial virus (RSV) is a common cause of acute lower respiratory tract infection in infants, older adults and the immunocompromised. Effective directly acting antivirals are not yet available for clinical use. To address this, we screen the ReFRAME drug-repurposing library consisting of 12,000 small molecules against RSV. We identify 21 primary candidates including RSV F and N protein inhibitors, five HSP90 and four IMPDH inhibitors. We select lonafarnib, a licensed farnesyltransferase inhibitor, and phase III candidate for hepatitis delta virus (HDV) therapy, for further follow-up. Dose-response analyses and plaque assays confirm the antiviral activity (IC50: 10-118 nM). Passaging of RSV with lonafarnib selects for phenotypic resistance and fixation of mutations in the RSV fusion protein (T335I and T400A). Lentiviral pseudotypes programmed with variant RSV fusion proteins confirm that lonafarnib inhibits RSV cell entry and that these mutations confer lonafarnib resistance. Surface plasmon resonance reveals RSV fusion protein binding of lonafarnib and co-crystallography identifies the lonafarnib binding site within RSV F. Oral administration of lonafarnib dose-dependently reduces RSV virus load in a murine infection model using female mice. Collectively, this work provides an overview of RSV drug repurposing candidates and establishes lonafarnib as a bona fide fusion protein inhibitor.


Assuntos
Dibenzocicloeptenos , Piridinas , Infecções por Vírus Respiratório Sincicial , Animais , Feminino , Camundongos , Reposicionamento de Medicamentos , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/química
2.
Angew Chem Int Ed Engl ; 63(4): e202308131, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37840425

RESUMO

Deriving active pharmaceutical agents from renewable resources is crucial to increasing the economic feasibility of modern biorefineries and promises to alleviate critical supply-chain dependencies in pharma manufacturing. Our multidisciplinary approach combines research in lignin-first biorefining, sustainable catalysis, and alternative solvents with bioactivity screening, an in vivo efficacy study, and a structural-similarity search. The resulting sustainable path to novel anti-infective, anti-inflammatory, and anticancer molecules enabled the rapid identification of frontrunners for key therapeutic indications, including an anti-infective against the priority pathogen Streptococcus pneumoniae with efficacy in vivo and promising plasma and metabolic stability. Our catalytic methods provided straightforward access, inspired by the innate structural features of lignin, to synthetically challenging biologically active molecules with the core structure of dopamine, namely, tetrahydroisoquinolines, quinazolinones, 3-arylindoles and the natural product tetrahydropapaveroline. Our diverse array of atom-economic transformations produces only harmless side products and uses benign reaction media, such as tunable deep eutectic solvents for modulating reactivity in challenging cyclization steps.


Assuntos
Descoberta de Drogas , Lignina , Lignina/química , Solventes/química , Catálise , Biomassa
3.
PLoS Pathog ; 19(7): e1011506, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37459366

RESUMO

In addition to antioxidative and anti-inflammatory properties, activators of the cytoprotective nuclear factor erythroid-2-like-2 (NRF2) signaling pathway have antiviral effects, but the underlying antiviral mechanisms are incompletely understood. We evaluated the ability of the NRF2 activators 4-octyl itaconate (4OI), bardoxolone methyl (BARD), sulforaphane (SFN), and the inhibitor of exportin-1 (XPO1)-mediated nuclear export selinexor (SEL) to interfere with influenza virus A/Puerto Rico/8/1934 (H1N1) infection of human cells. All compounds reduced viral titers in supernatants from A549 cells and vascular endothelial cells in the order of efficacy SEL>4OI>BARD = SFN, which correlated with their ability to prevent nucleo-cytoplasmic export of viral nucleoprotein and the host cell protein p53. In contrast, intracellular levels of viral HA mRNA and nucleocapsid protein (NP) were unaffected. Knocking down mRNA encoding KEAP1 (the main inhibitor of NRF2) or inactivating the NFE2L2 gene (which encodes NRF2) revealed that physiologic NRF2 signaling restricts IAV replication. However, the antiviral effect of all compounds was NRF2-independent. Instead, XPO1 knock-down greatly reduced viral titers, and incubation of Calu3 cells with an alkynated 4OI probe demonstrated formation of a covalent complex with XPO1. Ligand-target modelling predicted covalent binding of all three NRF2 activators and SEL to the active site of XPO1 involving the critical Cys528. SEL and 4OI manifested the highest binding energies, whereby the 4-octyl tail of 4OI interacted extensively with the hydrophobic groove of XPO1, which binds nuclear export sequences on cargo proteins. Conversely, SEL as well as the three NRF2 activators were predicted to covalently bind the functionally critical Cys151 in KEAP1. Blocking XPO1-mediated nuclear export may, thus, constitute a "noncanonical" mechanism of anti-influenza activity of electrophilic NRF2 activators that can interact with similar cysteine environments at the active sites of XPO1 and KEAP1. Considering the importance of XPO1 function to a variety of pathogenic viruses, compounds that are optimized to inhibit both targets may constitute an important class of broadly active host-directed treatments that embody anti-inflammatory, cytoprotective, and antiviral properties.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Humanos , Transporte Ativo do Núcleo Celular , Células Endoteliais/metabolismo , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H1N1/genética , Carioferinas/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ribonucleoproteínas/metabolismo , RNA Mensageiro/metabolismo , Replicação Viral
4.
ACS Chem Biol ; 15(2): 388-395, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31944659

RESUMO

With the aim to develop novel antiviral agents against Kaposi's Sarcoma Herpesvirus (KSHV), we are targeting the latency-associated nuclear antigen (LANA). This protein plays an important role in viral genome maintenance during latent infection. LANA has the ability to tether the viral genome to the host nucleosomes and, thus, ensures latent persistence of the viral genome in the host cells. By inhibition of the LANA-DNA interaction, we seek to eliminate or reduce the load of the viral DNA in the host. To achieve this goal, we screened our in-house library using a dedicated fluorescence polarization (FP)-based competition assay, which allows for the quantification of LANA-DNA-interaction inhibition by small organic molecules. We successfully identified three different compound classes capable of disrupting this protein-nucleic acid interaction. We characterized these compounds by IC50 dose-response evaluation and confirmed the compound-LANA interaction using surface plasmon resonance (SPR) spectroscopy. Furthermore, two of the three hit scaffolds showed only marginal cytotoxicity in two human cell lines. Finally, we conducted STD-NMR competition experiments with our new hit compounds and a previously described fragment-sized inhibitor. Based on these results, future compound linking approaches could serve as a promising strategy for further optimization studies in order to generate highly potent KSHV inhibitors.


Assuntos
Antivirais/farmacologia , Herpesvirus Humano 8/efeitos dos fármacos , Proteínas Nucleares/antagonistas & inibidores , Antígenos Virais/metabolismo , Antivirais/toxicidade , DNA/metabolismo , Descoberta de Drogas , Células HEK293 , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Proteínas Nucleares/metabolismo , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/toxicidade
5.
Chemistry ; 26(32): 7219-7225, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31984562

RESUMO

Lack of new antibiotics and increasing antimicrobial resistance are among the main concerns of healthcare communities nowadays, and these concerns necessitate the search for novel antibacterial agents. Recently, we discovered the cystobactamids-a novel natural class of antibiotics with broad-spectrum antibacterial activity. In this work, we describe 1) a concise total synthesis of cystobactamid 507, 2) the identification of the bioactive conformation using noncovalently bonded rigid analogues, and 3) the first structure-activity relationship (SAR) study for cystobactamid 507 leading to new analogues with high metabolic stability, superior topoisomerase IIA inhibition, antibacterial activity and, importantly, stability toward the resistant factor AlbD. Deeper insight into the mode of action revealed that the cystobactamids employ DNA minor-groove binding as part of the drug-target interaction without showing significant intercalation. By designing a new analogue of cystobactamid 919-2, we finally demonstrated that these findings could be further exploited to obtain more potent hexapeptides against Gram-negative bacteria.


Assuntos
Antibacterianos/síntese química , Asparagina/análogos & derivados , Bactérias Gram-Negativas/efeitos dos fármacos , Nitrocompostos/química , Antibacterianos/química , Antibacterianos/farmacologia , Asparagina/química , Asparagina/farmacologia , Bactérias Gram-Negativas/química , Testes de Sensibilidade Microbiana , Conformação Molecular , Nitrocompostos/farmacologia , Relação Estrutura-Atividade
6.
J Control Release ; 314: 62-71, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31654686

RESUMO

Cystic fibrosis (CF) is a serious lung disease, commonly susceptible to Pseudomonas aeruginosa colonization. The dense mucus together with biofilm formation limit drug permeability and prevent the drug from reaching the site of action, causing treatment failure of the bacterial infection. Besides the use of antibiotics, the mucolytic agent N-acetylcysteine (NAC) is recommended to be co-administered in the treatment of CF. Although several formulations have been developed for inhalation therapy to improve the pulmonary condition in CF patients, there is still no comprehensive study on a combined multifunctional dry powder formulation of antibiotics with NAC. In this work, we developed an innovative multifunctional dry powder inhaler (DPI) formulation based on salt formation between NAC and antibiotics and characterized their solid state properties and physical stability. NAC could be spray dried together with three different antibiotics, azithromycin (Azi), tobramycin (Tobra) and ciprofloxacin (Cipro), without the use of organic solvents to form Azi/NAC, Tobra/NAC and Cipro/NAC DPI formulations. Solid-state characterization of these DPI formulations showed that they were amorphous after spray drying. Azi/NAC and Tobra/NAC form co-amorphous salt systems that were physically stable under storage at stress conditions. For particle characterization, the obtained mass median aerodynamic diameters were in a suitable range for inhalation (< 5.0µm). The multifunctional antibiotic/NAC formulations conserved or improved the antibiotic susceptibility and showed promising results regarding the inhibition of P. aeruginosa PA14 biofilm formation.


Assuntos
Acetilcisteína/administração & dosagem , Antibacterianos/administração & dosagem , Biofilmes/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Acetilcisteína/farmacologia , Administração por Inalação , Animais , Antibacterianos/farmacologia , Azitromicina/administração & dosagem , Azitromicina/farmacologia , Ciprofloxacina/administração & dosagem , Ciprofloxacina/farmacologia , Fibrose Cística/complicações , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Expectorantes/administração & dosagem , Expectorantes/farmacologia , Cavalos , Muco/microbiologia , Tamanho da Partícula , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Tobramicina/administração & dosagem , Tobramicina/farmacologia
7.
Chem Sci ; 11(5): 1316-1334, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34123255

RESUMO

There is an alarming scarcity of novel chemical matter with bioactivity against multidrug-resistant Gram-negative bacterial pathogens. Cystobactamids, recently discovered natural products from myxobacteria, are an exception to this trend. Their unusual chemical structure, composed of oligomeric para-aminobenzoic acid moieties, is associated with a high antibiotic activity through the inhibition of gyrase. In this study, structural determinants of cystobactamid's antibacterial potency were defined at five positions, which were varied using three different synthetic routes to the cystobactamid scaffold. The potency against Acinetobacter baumannii could be increased ten-fold to an MIC (minimum inhibitory concentration) of 0.06 µg mL-1, and the previously identified spectrum gap of Klebsiella pneumoniae could be closed compared to the natural products (MIC of 0.5 µg mL-1). Proteolytic degradation of cystobactamids by the resistance factor AlbD was prevented by an amide-triazole replacement. Conjugation of cystobactamid's N-terminal tetrapeptide to a Bodipy moiety induced the selective localization of the fluorophore for bacterial imaging purposes. Finally, a first in vivo proof of concept was obtained in an E. coli infection mouse model, where derivative 22 led to the reduction of bacterial loads (cfu, colony-forming units) in muscle, lung and kidneys by five orders of magnitude compared to vehicle-treated mice. These findings qualify cystobactamids as highly promising lead structures against infections caused by Gram-positive and Gram-negative bacterial pathogens.

8.
J Med Chem ; 59(15): 7212-22, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27339173

RESUMO

We are concerned with the development of novel anti-infectives with dual antibacterial and antiretroviral activities for MRSA/HIV-1 co-infection. To achieve this goal, we exploited for the first time the mechanistic function similarity between the bacterial RNA polymerase (RNAP) "switch region" and the viral non-nucleoside reverse transcriptase inhibitor (NNRTI) binding site. Starting from our previously discovered RNAP inhibitors, we managed to develop potent RT inhibitors effective against several resistant HIV-1 strains with maintained or enhanced RNAP inhibitory properties following a structure-based design approach. A quantitative structure-activity relationship (QSAR) analysis revealed distinct molecular features necessary for RT inhibition. Furthermore, mode of action (MoA) studies revealed that these compounds inhibit RT noncompetitively, through a new mechanism via closing of the RT clamp. In addition, the novel RNAP/RT inhibitors are characterized by a potent antibacterial activity against S. aureus and in cellulo antiretroviral activity against NNRTI-resistant strains. In HeLa and HEK 293 cells, the compounds showed only marginal cytotoxicity.


Assuntos
Antibacterianos/farmacologia , Ácidos Carboxílicos/farmacologia , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , DNA Polimerase Dirigida por RNA/metabolismo , Tiofenos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/química , RNA Polimerases Dirigidas por DNA/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Células HEK293 , HIV/efeitos dos fármacos , HIV/metabolismo , Células HeLa , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA